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The cell wall is a complex and dynamic structure that determines plants’
performance by constant remodeling of its compounds. Although cellulose
is its major load-bearing component, pectins are crucial to determine wall
characteristics. Changes in pectin physicochemical properties, due to pec-
tin remodeling enzymes (PRE), induce the rearrangement of cell wall com-
pounds, thus, modifying wall architecture. In this work, we tested for the
first time how cell wall dynamics affect photosynthetic properties in Arabi-
dopsis thaliana pectin methylesterase atpme17.2 and pectin acetylesterase
atpae11.1 mutants in comparison to wild-type Col-0. Our results showed
maintained PRE activities comparing mutants with wild-type and no signif-
icant differences in cellulose, but cell wall non-cellulosic neutral sugars
contents changed. Particularly, the amount of galacturonic acid (GalA) –
which represents to some extent the pectin cell wall proportion – was
reduced in the two mutants. Additionally, physiological characterization
revealed that mutants presented a decreased net CO2 assimilation (AN)
because of reductions in both stomatal (gs) and mesophyll conductances
(gm). Thus, our results suggest that atpme17.2 and atpae11.1 cell wall
modifications due to genetic alterations could play a significant role in
determining photosynthesis.

Introduction

The plant cell wall is a complex structure surrounding
plant cells that determines plant morphology by defining
cells’ shape and size due to the maintenance of an appro-
priated turgor pressure (Cosgrove 2005, Ali and

Traas 2016). It is mainly composed of cellulose microfi-
brils cross-linked to non-cellulosic polysaccharides,
hemicelluloses. This network consisting of cellulose
and hemicelluloses is embedded in a matrix of pectins,
another specific type of non-cellulosic polysaccharides
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PAE, pectin acetylesterase; PME, pectin methylesterase; PRE, pectin remodeling enzymes; RG-I, rhamnogalacturonan type 1;
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(Carpita and Gibeaut 1993, Carpita and McCann 2002,
Cosgrove 2005, Lampugnani et al. 2018). By constant
remodeling of its components and because of the action
of cell wall remodeling enzymes, the cell wall is a highly
dynamic structure for the synthesis of new polysaccha-
rides during cell elongation and differentiation and/or in
response to stress (Carpita and McCann 2002, Cos-
grove 2005, 2016, Tenhaken 2015, Hocq et al. 2017,
Kong et al. 2019, Rui and Dinnery 2019).

Although cell wall mechanical properties are often
related to the interaction between cellulose and hemicel-
luloses (Baskin 2005, Geitmann and Ortega 2009), the
importance of pectins physicochemical modifications in
determining cell wall traits during plants growth and in
response to biotic and abiotic stresses – for instance,
porosity, hydric status and elasticity – has also been dem-
onstrated (Cosgrove 2005, 2016, Pelloux et al. 2007,
Moore et al. 2008, Solecka et al. 2008, McKenna
et al. 2010, Gou et al. 2012, Palin and Geitmann 2012,
Turbant et al. 2016, Hocq et al. 2017, Kong et al. 2019,
Roig-Oliver et al. 2020). Pectins are complex non-
cellulosic polysaccharides rich in galacturonic acid
(GalA) that can be divided into four main polymers
according to their chemical structure: rhamnogalacturo-
nans types 1 and 2 (RG-I and RG-II, respectively), homo-
galacturonans (HG) and xylogalacturonan (XGA) (Caffall
and Mohnen 2009, Atmodjo et al. 2013). Although the
ratio between these polysaccharides depends on species,
tissues and plant developmental stages, HG are the most
abundant ones and consist in linear regions of up to
200 α-1,4-linked GalA residues (Carpita and
McCann 2002, Caffall and Mohnen 2009) secreted to
the cell wall in a highly methyl-esterified form (70–80%;
Pelloux et al. 2007, Guénin et al. 2017). Pectin methyles-
terases (PME, EC 3.1.1.11) are enzymes which remove
HGmethylgroups (Pellouxet al. 2007,Turbant et al. 2016,
Guénin et al. 2017). Whilst low levels of PME activity
have been related to an increase of cell wall rigidity and
to alterations in seed germination, plant growth and repro-
duction (Parre and Geitmann 2005, Bosch and
Hepler 2005, Derbyshire et al. 2007, Pelletier et al. 2010,
Müller et al. 2013, Leroux et al. 2015, Levesque-Tremblay
et al. 2015, Scheler et al. 2015, Turbant et al. 2016, Gué-
nin et al. 2017), enhanced PME activity could lead to cell
wall loosening (Peaucelle et al. 2008, 2011). On the other
hand, pectin acetylesterases (PAE, EC 3.1.1.6) control the
pectin acetylesterification status by regulating the degree
of GalA acetylation in both HG and RG-I residues, which
can also interfere with plants growth and development
(Gou et al. 2008, 2012, de Souza et al. 2014, de Souza
and Pauly 2015). However, little is still known regarding
the specific biological implications of different acetylation
degrees (Gou et al. 2012, de Souza et al. 2014, de Souza

and Pauly 2015, Philippe et al. 2017). Thus, the action
of pectin remodeling enzymes (PRE) – which includes
PME and (P)AE activities – involves changes in pectins
physicochemical properties that confer them the ability
to rearrange the pectin matrix as well as to modify their
interaction betweenother cellwall compoundsmodifying
wall architecture, thickness and porosity (Cosgrove 2005,
Solecka et al. 2008, de Souza and Pauly 2015, Houston
et al. 2006, Turbant et al. 2016, Hocq et al. 2017, Kong
et al. 2019, Rui and Dinnery 2019). Some of these cell
wall characteristics, particularly thickness and porosity,
have actually been identified as key traits determining
mesophyll conductance (gm) and, thus, photosynthesis
(Terashima et al. 2001, Evans et al. 2009, Flexas
et al. 2012, Tomás et al. 2013, Carriquí et al. 2015,
2019, 2020, Tosens et al. 2016, Onoda et al. 2017,
Peguero-Pina et al. 2017, Veromann-Jürgenson
et al. 2017). As these cell wall characteristics are likely
influenced by dynamic changes in its composition, cell
wall components rearrangements have been recently
shown to affect gm at an interspecific level under non-
stress conditions (Carriquí et al. 2020) and at an intraspe-
cific level in response to environmental stresses
(Clemente-Moreno et al. 2019, Roig-Oliver et al. 2020).

The use of mutants has demonstrated that cell wall
modifications could involve changes in photosynthesis.
Particularly, Ellsworth et al. (2018) tested Oryza sativa
mutants with disruptions in cell wall mixed-linkage glu-
can biosynthesis leading to slower growth and pheno-
typic disruptions such as thinner stems with reduced
flexibility. Additionally, Zhang et al. (2020) tested other
mutants of the same species in which cellulose microfi-
brils orientation was disrupted affecting plant growth
and photosynthesis as shown by a lower chlorophyll con-
tent. Although these studies demonstrate that cell wall
modifications alter photosynthesis, their results are diffi-
cult to extrapolate to the rest of angiosperms as monocots
present specific cell wall composition (Carpita and
McCann 2002, Pooper and Tuohy 2010, Sørensen
et al. 2010). Thus, the use of Arabidopsis thaliana
L. (Heynh) as a model plant is more adequate for a better
understanding of how cell wall modifications affect pho-
tosynthesis. After the completion of its genome sequence
(Arabidopsis Genome Initiative 2000), Arabidopsis has
gained importance because it is relatively easy to gener-
ate mutants to study how specific genetic alterations
modify both biochemical and physiological processes.
Although Weraduwage et al. (2016) have already tested
A. thaliana mutants with alterations in pectin methyl-
transferases showing that they changed both PME activity
and photosynthesis, further information regarding other
relevant enzyme activities – such as pectin acetyles-
terases – is necessary for a better understanding of how

Physiol. Plant. 172, 20211440

 13993054, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ppl.13186 by U

niversitat D
e L

es Illes B
alears, W

iley O
nline L

ibrary on [11/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



cell wall dynamics can affect photosynthesis, especially
gm. Thus, we provide a study in which A. thaliana
atpme17.2, a type I PME (Sénéchal et al. 2014), and
atpae11.1 (Philippe et al. unpublished) mutants were
tested for the first time in comparison to wild-type Col-0
in order to evaluate the role of cell wall composition
and PRE activities in determining photosynthetic
efficiency.

Materials and methods

Plant material and growth conditions

A. thaliana atpme17.2 (SALK_059908) and atpae11.1
(GK 505H02) mutants from wild-type Columbia (Col-
0) were isolated from SALK (SIGnAL, USA) and GABI
(CeBiTec, Germany) T-DNA insertion collections,
respectively, using gene-specific forward and reverse
primers and T-DNA left border specific primers
(Sénéchal et al. 2014, Philippe et al. unpublished data).
Whilst the T-DNA insertion was localized in the first
intron for atpme17.2, it was localized in the tenth for
atpae11.1. Twelve seeds of each studied genotype were
sown individually in horticultural alveolus with a sub-
strate mixture containing peat and perlite (3:1, v/v). Hor-
ticultural alveolus with plastic trays for sub-irrigation
were placed in a growth chamber at 22�C with 12/
12 h light/darkness daily fluctuation receiving
200–250 μmol m−2 s−1 photosynthetic photon flux den-
sity (PPFD) and they were watered three times per week
with Hoagland solution 50%. Three weeks later, six
individual replicates per genotype were randomly
selected to be transplanted to individual pots filled with
the same substrate mixture following the ‘ice-cream
cone-like’ method (Flexas et al. 2007a). Thus, plants
grew with their bases on the top of the ‘cone’, with their
rosette spreading downwards to facilitate gas-exchange
measurements. In all cases, plants were subjected to
these conditions for 40 days.

Gas-exchange and fluorescence measurements

Forty days after the sowing, a fully developed leaf per
plant from the third to last pair of the rosette was selected
for simultaneous gas-exchange and chlorophyll
a fluorescence (Chl a) measurements using an infrared
gas analyzer (IRGA) LI-6400XTR equipped with a fluo-
rometer (Li-6400-40; Li-Cor Inc.). Measurements were
performed from 09:00 to 15:00 h. Leaves were clamped
into a 2 cm2 cuvette. The block temperature was kept at
25�C and the vapor pressure deficit (VPD) at around
1.5 kPa. Leaf steady-state conditions were induced at sat-
urating photosynthetic photon flux density (PPFD
1250 μmol m−2 s−1, 90–10% red-blue light) and

400 μmol CO2 mol−1 air. The flow rate was fixed at
300 μmol air min−1. When steady-state conditions were
reached, AN-Ci curves were performed increasing ambi-
ent CO2 concentrations (Ca) from 50 to 1500 μmol CO2

mol−1 air. Measurements for net CO2 assimilation (AN),
stomatal conductance (gs), CO2 concentration at the
sub-stomatal cavity (Ci) and steady-state fluorescence
(Fs) were registered after the stabilization of the gas-
exchange rates in a given Ca in a period comprised
between 180 and 240 s. Then, a saturating light flash
was applied to obtain the maximum fluorescence (Fm0).
From these values, the real quantum efficiency of photo-
system II (ΦPSII) was registered. All AN-Ci data was cor-
rected for CO2 leakage in and out of the IRGA chamber
following Flexas et al. (2007b). Light curves under non-
photorespiratory conditions were assessed as described
in Valentini et al. (1995) to calculate the electron trans-
port rate (ETR). Light respiration (Rlight) was assumed as
half the dark respiration rate, determined after plants
exposure to full darkness for, at least, 20 min (Niinemets
et al. 2005). From all these parameters, mesophyll con-
ductance (gm) was calculated according to Harley
et al. (1992) using the value for CO2 compensation point
in the absence of respiration (Γ*) reported by Whitney
et al. (2011) for A. thaliana.

Anatomical measurements

After gas-exchange measurements, one randomly
selected plant per genotype was used to collect samples
for anatomy. Thus, small pieces of those leaves used for
gas-exchange measurements were cut avoiding main
foliar structures and were fixed under vacuum pressure
with glutaraldehyde 4% and paraformaldehyde 2% in a
0.01 M phosphate buffer (pH 7.4). Afterward, they were
post-fixed in 2% buffered osmium tetroxide for 2 h and
dehydrated by a graded ethanol series. Obtained pieces
were embedded in LR white resin (London Resin Com-
pany) and were placed in an oven at 60�C for 48 h
(Tomás et al. 2013, Carriquí et al. 2015, 2019). Semi-fine
(0.8 μm) cross-sections were cut with an ultramicrotome
(Leica RM2265, Leica Biosystems) and were stained with
toluidine blue 0.1% to be observed in bright field with a
light microscope (Nikon-Eclipse-90i). Pictures at ×100
magnifications were taken to determine leaf thickness
(TLEAF), upper epidermis thickness (TUE), lower epidermis
thickness (TLE), mesophyll thickness (TMES), number of
palisade layers (NPAL) and fraction of mesophyll intercel-
lular air spaces (fias). Values for all parameters were
obtained as an average of 10 measurements from ran-
domly selected cell structures using the ImageJ software
(Wayne Rasband/NIH).
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Cell wall composition

Sampling for cell wall analysis was performed in those
leaves adjacent to the one used for gas-exchange
measurements after leaving plants under dark condi-
tions overnight to minimize starch content. Around
0.5–1 g of fresh leaf tissue per plant were frozen in
liquid nitrogen, freeze-dried, ground to fine powder
in a ball mill and stored at −80�C. Plant cell wall
material was prepared from 10 mg of dry leaf powder
according to Peña et al. (2004). Dry cell wall material
(DCW) was digested with α-amylase according to
Fleischer et al. (1999). Following Foster et al. (2010),
3 mg of each α-amylase-digested DCW were placed
in screw-capped glass tubes to be hydrolysed with
1 ml of 2 N trifluoroacetic acid at 100�C for 90 min,
cooled down at room temperature and centrifuged
obtaining two phases: the supernatant (non-cellulosic
cell wall sugars, i.e. hemicelluloses and pectins) and
the pellet (cellulosic cell wall sugars). Trifluoroacetic
acid remains from the supernatant were evaporated
under nitrogen flow to quantify specific neutral sugars
from hemicelluloses cell wall fraction (i.e. fucose,
rhamnose, arabinose, galactose, glucose, xylose and
mannose) and from pectin fraction (i.e. galacturonic
acid) as described in Turbant et al. (2016). After evap-
orated, hydrolysates were dissolved with 1 ml of deio-
nized water and each one was diluted (1:10, v/v) to
determine its specific non-cellulosic neutral sugars com-
position by high-performance anion-exchange chroma-
tography coupled with a pulsed electrochemical
detection (HPAEC-PAD; Dionex ICS-3000, Dionex
Corporation).

Cellulose content was estimated following Foster
et al. (2010). Thus, pellets were cleaned three times with
deionized water and subsequently freeze-dried over-
night. Freeze-dried samples were resuspended in 1 ml
Updegraff reagent (acetic acid: nitric acid: deionized
water, 8:1:2 v/v) to be heated at 100�C for 30 min. Once
cooled, samples were centrifuged at 10 000 g and pellets
were cleaned twice with deionized water and three times
with absolute acetone. Then, they were freeze-dried
overnight. The following morning, 175 μl sulfuric acid
72% were added and samples were incubated at 30�C
for 45 min. Afterward, 825 μl deionized water was added
and the mixtures were centrifuged at 10 000 g. Finally,
200 μl anthrone reagent prepared in sulfuric acid 100%
(2:1, w:v) plus 90 μl deionized water was added to 10 μl
of each supernatant. Samples absorbance was read at
625 nm using a Microplate Spectrophotometer (BioTek
PowerWave). Cellulose concentration was determined
by interpolating samples absorbance from a glucose cal-
ibration curve.

Protein extraction and cell wall enzyme activity
assays

Enriched weakly bound cell wall proteins (CWP) were
extracted to perform PME and (P)AE enzyme activities
assays. Briefly, around 0.7–1 g fresh leaf tissue from
leaves adjacent to the one used for gas-exchange mea-
surements were sampled, grounded to fine powder using
a ball mill and stored at −80�C. Then, 50 mg of frozen
plant powder were homogenized in 150 μl of 50 mM
sodium dihydrogen phosphate (pH 7.5) containing 2 M
sodium chloride. Samples were incubated at 4�C under
constant agitation for 30 min before centrifugation at
13 000 g. The supernatants were recovered and a second
extraction was performed on pellets following the same
methodology. The supernatants were combined and
desalted on Amicon Ultra-0.5 Centrifugal Filter Unit
3Kda cut-off (Merck Millipore) using McIlvaine buffer
(0.2 M disodium hydrogen phosphate prepared in
0.1 M citric acid, pH 6.5) containing 100 mM sodium
chloride. Protein concentration was determined accord-
ing to Bradford (1976). Thus, samples absorbance was
read at 595 nm using a spectrophotometer (BioTek
PowerWave) and CWP concentration was determined
by interpolating samples values from a bovine serum
albumin calibration curve.

The overall PME enzyme activity was determined by
measuring the methanol released from pectin methyl
ester content (Baldwin et al. 2014). Briefly, 5 μl of each
CWP were incubated with 85 μl of 50 mM sodium phos-
phate buffer (pH 7.5) containing 0.025 U alcohol oxidase
and 100 μg methyl-esterified citrus pectin solution 90%.
Samples were incubated at 28�C for 30 min and, then,
100 μl of staining solution (2 M ammonium acetate and
20 mM pentane-2,4-dione prepared in 50 mM glacial
acetic acid) were added. They were incubated at 68�C
under darkness conditions for 15 min and their absor-
bance was read at 420 nm with a spectrophotometer
(BioTek PowerWave). PME enzyme activity was deter-
mined by interpolating samples values from a methanol
calibration curve.

AE and PAE enzyme activities were estimated by mea-
suring acetate release using triacetin and sugar beet as a
substrate, respectively (Baldwin et al. 2014, Remoroza
et al. 2014). Thus, 20 μg of CWP extract in a final volume
of 30 μl were incubated with 0.2 M sodium dihydrogen
phosphate prepared in 100 mM sodium chloride and
0.1M citric acid (pH 6.5). Then, 120 μl of 100 mM triace-
tin (Sigma) or 10 mg ml−1 of sugar beet pectin (42%
methylesterification and 31% acetylation degrees, CP
Kelco) prepared in McIlvaine buffer containing 100 mM
sodium chloride were added to samples for AE or PAE
assays, respectively. They were incubated at 40�C under

Physiol. Plant. 172, 20211442
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constant agitation for 2 h. Once cooled, the acetate con-
centration of each sample was determined with the
Acetic Acid Kit (Megazyme, K-ACETRM). Samples absor-
bance was read at 340 nm with a spectrophotometer
(BioTek PowerWave). AE and PAE enzyme activities
were determined by interpolating samples values from
an acetic acid calibration curve.

Statistical analysis

Thompson test was performed to detect and eliminate
outliers for all tested parameters. Then, one-way ANOVA

and subsequent LSD test were assessed to detect statisti-
cally significant differences for the studied parameters
between genotypes (P < 0.05). All analyses were per-
formedwith R software (ver. 3.2.2; R Core Team, Austria).

Results

Pectin remodeling enzymes activities

No significant changes in PRE activities were observed
comparing atpme17.2 and atpae11.1 mutants with the
wild-type Col-0 (Fig. 2). Particularly, all tested genotypes
presented similar amount of PME enzyme activity
(0.18 ± 0.01, 0.19 ± 0.02 and 0.18 ± 0.01 nmol metha-
nol μg protein−1 min−1 for Col-0, atpae11.1 and
atpme17.2, respectively; Fig. 2A). A similar pattern was
detected for both AE and PAE enzyme activities
(Fig. 2B,C, respectively).

Cell wall cellulosic and non-cellulosic sugars
characterization

Cellulose content did not differ between the studied
genotypes (Fig. 3A). However, there was a strong reduc-
tion in the cell wall pectin fraction, expressed by the
amounts of galacturonic acid, in both atpae11.1 and
atpme17.2 mutants (34.55 ± 3.96 and 66.27 ± 5.78 %
WT, respectively; Fig. 3A). Regarding the hemicellulosic
cell wall fraction, although both mutants presented
increased fucose content in comparison to Col-0, these
changes were only significant for atpae11.1 (Fig. 3B).
Nonetheless, no significant modifications were detected
comparing the amount of other non-cellulosic neutral
sugars belonging to hemicelluloses (i.e. rhamnose, arab-
inose, galactose, glucose, xylose and mannose) among
genotypes (Fig. 3B).

Photosynthetic characterization

The analysis of AN-Ci curves revealed that both
atpae11.1 and atpme17.2mutants showed strong reduc-
tions in photosynthetic capacity accompanied by dimin-
ished Ci (Supporting Information, Fig. S1). At ambient
CO2 concentration, mutants presented more than a

two-fold decrease in AN compared to wild-type
(4.95 ± 1.19, 3.24 ± 0.58 and 10.05 ± 0.63 μmol CO2

m−2 s−1 for atpae11.1, atpme17.2 and Col-0, respec-
tively; Fig. 4A). Additionally, decreases in gs were also
detected, being more pronounced in atpme17.2
(0.11 ± 0.02 mol CO2 m

−2 s−1; Fig. 4B). However, these
AN and gs reductions in both mutants did not lead to dif-
fering WUEi in comparison to Col-0 (Fig. 4C). Again, gm
reductions were found in both mutants, especially in
atpme17.2 with a gm eight-fold lower than Col-0
(Fig. 4D). Finally, no significant differences among geno-
types were found for ETR and Rlight (Fig. 4E,F,
respectively).

Anatomical characterization

The preliminary analysis of leaf anatomic features indi-
cated a reduction in TLEAF which was observed in both
mutants in comparison to Col-0 (Table S1). However,
they presented slightly increased and reduced TUE and
TLE, respectively, than the wild-type (Table S1). Addition-
ally, in both mutants there were indications of a decrease
in TMES, but even more marked in atpae11.1, which also
obtained lower NPAL than Col-0 (Table S1). Finally,
changes in fias suggested an increase of porosity in
atpme17.2 and atpae11.1 in comparison to Col-0
(Table S1).

Discussion

Cell wall rearrangement is an important feature deter-
mining plants’ development during their entire life
(Carpita and McCann 2002, Cosgrove 2005, 2016, Ten-
haken 2015, Hocq et al. 2017, Lampugnani et al. 2018,
Kong et al. 2019, Rui and Dinnery 2019). In this work,
A. thaliana atpme17.2 and atpae11.1 mutants were
studied in comparison to wild-type Col-0 to assess for
the first time whether potential differences in their cell
wall composition – including PRE activities – could
affect photosynthesis.

Several studies have evidenced phenotypic effects
occurring in specific Arabidopsis mutants (for instance,
Hernández-Blanco et al. 2007, Kong et al. 2014, López-
Calcagno et al. 2017, Zhao et al. 2018), which were also
detected in this study as mutant plants reduced their
rosette diameter as well as their foliar size in comparison
to wild-type (Fig. 1). In fact, alterations of PRE activities
could be involved in several physiological processes
due to the remodeling of cell wall architecture, which
could modify the plants’ phenotype (Carpita and
McCann 2002, Cosgrove 2005, 2016, Hocq et al. 2017,
Kong et al. 2019). Particularly, the effects of altered
PME have been widely studied and, in Arabidopsis, they
are implicated in seed germination (Müller et al. 2013),
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Fig. 2. Enzyme activities in Arabidopsis thaliana Col-0, atpae11.1 and atpme17.2 genotypes. (A) Pectin methylesterase, (B) acetylesterase and (C) pectin
acetylesterase. Different superscript letters indicate significant difference (P < 0.05) between genotypes according to LSD test. n = 4–6 (means ± SE).

Fig. 1. Representative phenotypical alterations of 40-day-old wild-type Col-0 in comparison to atpae11.1 and atpme17.2 mutant genotypes.

Physiol. Plant. 172, 20211444
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seed mucilage adhesion (Turbant et al. 2016), reduction
of root hair production (Guénin et al. 2017), pollen grain
maturation and germination (Leroux et al. 2015), dark-
grown hypocotyls (Derbyshire et al. 2007, Pelletier
et al. 2010) or even in stomatal function (Amsbury
et al. 2016). On the other hand, although there is limited
information regarding specific biological effects of PAE
on plants growth and development, it seems that it could
be involved in determining Arabidopsis inflorescence
stem height (de Souza et al. 2014) and in regulating pol-
len tube growth and plant reproduction in other species
(Gou et al. 2012). However, we did not observe any
significant differences in PRE activities comparing
mutant genotypes with Col-0 (Fig. 2). Although Séné-
chal et al. (2014) and Philippe et al. (unpublished data)
reported that AtPME17 and AtPAE11, respectively,
were highly expressed in older leaves and roots, there
is no obvious correlation between high transcript levels
and translation into high protein levels and/or high
enzymes activities (Bosch and Hepler 2005, Jamet
et al. 2009). Additionally, although atpme17.2 and
atpae11.1 exhibited mutations in the same genes than
those mutants used in Sénéchal et al. (2014) and Phi-
lippe et al. (unpublished data), the ones studied here
presented alterations in introns, while those used in
the above-mentioned studies were localized in exons.
Thus, we suggest that different positions of the T-DNA
insertions used for our mutant genotypes could be
involved in differing PRE activities in comparison to
previous reports. Furthermore, our tested mutants could
contain specific PME and/or PAE proteins which may
not be present in Col-0, thus, compensating PME and
PAE activities. In A. thaliana, pectin methylesterases
belong to a multigenic family of 66 isoforms (Pelloux
et al. 2007). Therefore, as it has been proposed that
some genes could control the same processes (Bosch
and Hepler 2005), those alterations related to
AtPME17.2 could be supplied for other similar or
related genes. Similarly, pectin acetylesterases belong
to a multigenic family of 12 isoforms in A. thaliana,
but their implications are not fully understood (Gou
et al. 2012, Philippe et al. 2017). For instance, de
Souza et al. (2014) reported a genetic characterization
of null atpae8 and atpae9 mutants showing that they
presented 20% more acetate in their cell wall. More-
over, the double mutant showed an even more
enhanced acetate cell wall proportion (37%). How-
ever, Orfila et al. (2012) overexpressed an ortholog Ara-
bidopsis AtPAE8 from Vigna unguiculata in potato and
found a decreased degree of pectin acetylation. Follow-
ing previous studies, we expected changes in PAE
activity, but it was maintained at similar levels in all
tested genotypes perhaps due to genetic redundancy.

Despite enzymatic activities were maintained, the two
mutants presented alterations of cell wall composition
which could explain the phenotypic differences. How-
ever, our results for cell wall non-cellulosic neutral sugars
analyses differed from previous reports by Mertz
et al. (2012) and Engelsdorf et al. (2017). Particularly,
Mertz et al. (2012) determined that galacturonic acid
(GalA) was the most abundant non-cellulosic neutral
sugar in A. thaliana mur mutants. Additionally, Engels-
dorf et al. (2017) tested A. thaliana pgm, adg1-1 and
sex1-1 mutants and showed that neutral sugars from the
hemicellulosic cell wall fraction significantly changed
in comparison to wild-type Col-0, whilst GalA amounts
were maintained. Nonetheless, our results differed from
the previous studies probably because, apart from testing

Fig. 3. Cell wall composition of A. thaliana Col-0, atpae11.1 and
atpme17.2 genotypes. (A) Cellulose and galacturonic acid content and
(B) non-cellulosic neutral sugars content from hemicellulosic cell wall
fraction: L-fucose (Fuc), L-rhamnose (Rha), L-arabinose (Ara), D-galactose
(Gal), D-glucose (Glu), D-xylose (Xyl) and D-mannose (Man). Different
superscript letters indicate significant difference (P < 0.05) between
genotypes according to LSD test. n = 4–6 (means ± SE).
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Fig. 4. Photosynthetic characterization of A. thaliana Col-0, atpae11.1 and atpme17.2 genotypes. (A) Net CO2 assimilation (AN), (B) stomatal
conductance (gs), (C) intrinsic water use efficiency (WUEi), (D) mesophyll conductance (gm), (E) electron transport rate (ETR) and (F) light respiration
(Rlight). Different superscript letters indicate significant difference (P < 0.05) between genotypes according to LSD test. n = 5–6 (means ± SE).
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other mutants, our plants were grown under different
conditions, for instance, different photoperiod, light
intensity and soil composition. Additionally, we per-
formed the trifluoroacetic acid hydrolysis at 100�C
instead of at 121�C, which may have resulted in higher
resistance to the acid hydrolysis of the linkages between
GalA-GalA and rhamnose-GalA, thus, obtaining lower
amounts of both non-cellulosic neutral sugars than
expected. However, our results showed that both
mutants experienced decreased amounts of GalA
(i.e. pectins) compared to wild-type (Fig. 3A) with main-
tained PRE activities. In fact, there is no obvious correla-
tion between altered PRE activities and modified
pectins quantity probably because they determine pec-
tins physicochemical properties, not their amount
(Pelloux et al. 2007, Gou et al. 2012, Palin and Geit-
mann 2012, Turbant et al. 2016, Hocq et al. 2017, Kong
et al. 2019). Therefore, this descent in pectins as well as
some additional mutant-specific alterations in the hemi-
cellulosic cell wall fraction such as increased fucose in
atpae11.1 (Fig. 3B), could explain the diminished photo-
synthetic capacity (Figs 4 and S1) as previously reported
(Weraduwage et al. 2016), especially, via altered gm
(Ellsworth et al. 2018, Clemente-Moreno et al. 2019, Car-
riquí et al. 2020, Roig-Oliver et al. 2020). Of the previous
studies, Clemente-Moreno et al. (2019) and Roig-Oliver
et al. (2020) demonstrated a cell wall composition-
mediated effect on gm based on correlative evidence after
stress-inducing changes in both gm and cell wall compo-
sition testing tobacco and grapevines, respectively. Par-
ticularly, Clemente-Moreno et al. (2019) found a
negative relationship between non-cellulosic sugars,
specifically pectins, with gm. Although Weraduwage
et al. (2016) did not focus on modifications of gm, they
also highlighted the importance of pectins as possible
drivers of altered photosynthesis in A. thaliana cell wall
mutants. However, only Ellsworth et al. (2018) used cell
wall mutants to directly demonstrate the role of cell wall
composition on gm. Specifically, they used rice mutants
with disruptions in cell wall mixed-linkage glucan – a
compound specific of grasses – production and showed
a reduction in gm of 83%, which was only partially
explained by changes in observed anatomical properties.
In fact, Weraduwage et al. (2016) also reported that ana-
tomical alterations derived from cell wall modifications
were important determinants of photosynthesis. The
results provided in these previous studies lead to the sug-
gestion that altered cell wall composition may induce
changes in cell wall effective porosity and CO2 diffusion
path length and/or chemical properties, thus, changing
photosynthesis. Nonetheless, our results follow a differ-
ent pattern than those reported by Clemente-Moreno
et al. (2019) probably because they only tested one single

genotype after short-term water and salt stresses induc-
tion. As our tested genotypes were grown under non-
stressing conditions and the observed phenotypical
differences are likely to be constitutive, we believe that
our data on atpme17.2 and atpae11.1 mutants could
be much more comparable with that from Carriquí
et al. (2020). Particularly, while they demonstrated that
pectins themselves did not correlate with gm testing
seven conifers species, they found a strong positive rela-
tionship between gm and the ratio of pectins to cellu-
loses and hemicelluloses. Even though in this study we
do not have enough data to calculate this ratio, the fact
that celluloses were equally maintained among geno-
types, and pectins were not, suggests that gm reductions
in atpme17.2 and atpae11.1 mutants could also be
related to a diminished fraction of pectins to celluloses
and, perhaps, hemicelluloses. Additionally, although
anatomical traits were studied only preliminarily in this
work, we hypothesize that together with non-cellulosic
sugars alterations they could also be involved in photo-
synthesis reduction in both mutants as they display, for
instance, decreased TLEAF and TMES as compared to
wild-type (Table S1). However, more detailed anatomi-
cal studies of atpme17.2 and atpae11.1 mutants using
more replicates would be necessary to confirm this
point. Finally, and contrary to Ellsworth et al. (2018),
the mutants also showed a significant decrease of gs
(although of lower magnitude than that of gm). Whether
this is an indirect consequence of co-adjustment with
reduced gm (Flexas et al. 2013) or a direct effect of cell
wall composition on stomata (Jones et al. 2003) remains
to be elucidated.

This study provides insights on how different cell wall
architecture could influence the photosynthetic effi-
ciency in A. thaliana atpme17.2 and atpae11.1 mutants
in comparison to wild-type Col-0. Thus, we established
that cell wall composition modification could lead to
reduced photosynthetic traits in atpme17.2 and
atpae11.1 mutants maybe because of alterations in leaf
chemistry and, perhaps, in anatomical traits. However,
more studies are required to establish the potential impli-
cations of AtPME17.2 and AtPAE11.1 in whole plant
dynamics using mutants where the T-DNA insertion is
localized in their specific catalytic sites.
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Table S1. Anatomical characterization from semi-fine
cross-sections of Arabidopsis thaliana Col-0, atpae11.1
and atpme17.2 genotypes.

Fig. S1.Net CO2 assimilation at different CO2 concentra-
tions at the sub-stomatal cavity (AN-Ci curves) of Arabi-
dopsis thaliana Col-0, atpae11.1 and atpme17.2
genotypes.
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