
Contents lists available at ScienceDirect

Plant Science

journal homepage: www.elsevier.com/locate/plantsci

Review article

The influence of grafting on crops’ photosynthetic performance
Mateu Fullana-Pericàsa, Miquel À. Conesaa, Francisco Pérez-Alfoceab, Jeroni Galmésa,*
a Research Group on Plant Biology under Mediterranean Conditions-INAGEA, Universitat de les Illes Balears, Balearic Islands, Spain
b Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100, Murcia, Spain

A R T I C L E I N F O

Keywords:
Drought
Photosynthesis
Rootstock
Salinity
Scion
Water use efficiency

A B S T R A C T

In a near scenario of climate change where stress-derived limitations on crops' yield by affecting plant gas-
exchange are expected, grafting may become a cheap and easy technique to improve crops photosynthetic
performance and water-use efficiency. Inconsistent data of the effect of rootstocks over gas-exchange can be
found in literature, being necessary an integrative analysis of the effect of grafting over photosynthetic para-
meters. With this aim, we present a compilation of the effect of graft on the net CO2 assimilation rate (AN) and
other photosynthetic parameters across different species with agronomic interest. No differences were observed
in any photosynthetic parameter between non-grafted and self-grafted plants under non-stress conditions.
However, differences were found depending on the used rootstock, particularly for the intrinsic water-use ef-
ficiency (WUEi). We observed that variations in AN induced by rootstocks were related to changes in both
diffusive and biochemical parameters. Under drought or salt stress, different photosynthetic performances were
observed depending on the rootstock, although the high variability among studies promted to remarkable re-
sults. Overall, we observed that grafting can be a useful technique to improve plant photosynthetic performance,
and therefore, crop yield and WUE, and that the rootstock selection for a target environment is determinant for
the variations in photosynthesis.

1. Introduction

Grafting is a very ancient technique, consisting in the union of a
plant shoot (scion) and a root system (rootstock). For centuries, grafting
has been used in woody fruit trees and forestry as a clonal propagation
system [1,2], and more recently extended to horticultural crops, mainly
in cucurbits and solanaceous species [3]. Nowadays, it is a widely used
technique in orchards and greenhouses, overcoming the use of graft for
clonal propagation purposes, and focusing the target of rootstocks se-
lection in improving agronomic and physiologic traits [4].

Grafting induces a dramatic stress for plants, since water and nu-
trient flow from roots to shoots is interrupted until the new xylem is re-
established. Different biological steps need to occur during graft union
formation, involving differential gene expression and hormonal sig-
naling [5–9]. After adhesion of both graft partners and callus cell
proliferation at the graft interface, it takes 3–4 days after grafting to
reconnect phloem for most of the vegetables, while xylem reconnects
after 6–7 days [10,11].

Not only graft compatibility, but also the rootstock traits determine
scion performance. Rootstocks are mainly used to increase biotic [12]
and abiotic [13,14] stress tolerance and scion vigour [15,16]. Despite
the mechanisms through which rootstocks affect scion are not fully

understood yet, there are some evidences of higher root hydraulic
conductance [17–19] and extended soil exploration [20,21] of scions
grafted onto vigorous rootstocks. Furthermore, the growth promotion
of particular rootstocks has been related with an increased nutrient
acquisition capacity, which was translated in higher leaf chlorophyll
content or fluorescence [22–26]. Another described effect of grafting is
the alteration of the hormonal balance between rootstock-scion (de-
tailed review in [27,28]). Changes in the xylem sap concentration of
ABA, cytokinins and ethylene precursor aminocyclopropane-1-car-
boxylic acid (ACC) have been reported when using high-vigorous
rootstocks as compared to low-vigorous ones or non-grafted plants,
interacting with leaf size, stomatal closure and water loss [29–33]. Also,
the enhancement of proteomic and metabolic activities involved in
Calvin cycle, amino acids biosynthesis, ROS defense [34] and increased
biochemical activity [35] were observed in scion leaves in response to
grafting.

Considering all the described effects of grafting over scion devel-
opment, it is reasonable to expect an effect of grafting on the photo-
synthetic performance, and specifically the leaf gas-exchange governing
carbon and water balance. Even very similar rootstocks, with compar-
able commercial traits (enhanced scion yield, vigor…), may have dif-
ferent effect over photosynthesis (positive or negative) depending on
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many factors. Leaf gas-exchange is regulated by stomata, epidermal
pores composed by two specialized guard cells, modulating their
aperture in response to environmental conditions [36]. When stomata
open, atmospheric CO2 enters the leaf at a rate depending on photo-
synthetic CO2 fixation and diffusive resistances to CO2, which are im-
posed by the stomata itself and the leaf mesophyll. Concomitantly,
water vapor is lost at a rate depending on the leaf-to-air vapor pressure
deficit and on the stomatal conductance (gs). Under saturating irra-
diance, the CO2 fixation into sugar phosphates in the chloroplasts
mostly depends on the activity of Rubisco (Vcmax) [37]. Increasing the
photosynthetic capacity is widely accepted as critical to enhance crop
yield [38–40], and both diffusive and biochemical traits have been
identified as targets to improve the net CO2 assimilation rate [41–43].
However, crop water status and the link to stomatal conductance are
also important considerations determining leaf photosynthesis and field
crop performance [44,45]. In this sense, the ratio between leaf CO2

assimilation and water loss determines the intrinsic water-use efficiency
(WUEi), a key measure of the efficiency of the use of water resources
and a target for crop selection and breeding [46,47]. Nevertheless,
plants with increased WUEi are often endowed with reduced biomass
and yield, with an ongoing debate about the tradeoff between water use
and actual yield [48–50]. In this sense, grafting may become an
achievable way to disrupt this tradeoff by selecting superior root-
stock× scion combinations with improved both WUE and yield. In a
scenario of climate change, with higher variability of rainfall [51,52]
and higher temperatures [53], finding new strategies or mechanisms to
maximize WUE become unavoidable.

To our knowledge, this is the first time that a review study aims at
compiling recent literature (since late 20th century) on rootstock-
mediated effects on photosynthesis in grafted species with agronomic
interest. Data on AN, gs and WUEi, among other photosynthetic para-
meters, have been integrated with the following objectives: (i) to de-
termine if grafting has an effect over crops’ photosynthetic perfor-
mance, (ii) to analyze if the used rootstock influences any of the
compiled parameters under non-stress conditions, and (iii) to examine
the role of grafting and rootstocks maintaining the photosynthetic ca-
pacity under abiotic stress conditions. Moreover, in spite of the scarce
information available, an attempt has been done to correlate the root-
stock effect on photosynthesis and crop yield.

2. Methods

Peer-reviewed literature containing data of the net CO2 assimilation
rate (AN) of grafted plants from different species with agronomic in-
terest published over the last 20 years was compiled (Table 1). Litera-
ture was identified by Thompson-ISI Web of Science (Philadelphia,
USA) and Google-Google Scholar (Mountain View, USA). Aside of AN,
when available, data of other photosynthetic parameters were also
extracted from the original reports and included in the database: sto-
matal conductance (gs), intrinsic water-use efficiency (WUEi), sub-sto-
matal CO2 concentration (Ci), transpiration rate (E), mesophyll con-
ductance (gm), CO2 concentration in the chloroplast (CC), actual
photoshemical efficiency of photosystem II (ΦPSII), maximum quantum
efficiency of photosystem II (Fv/Fm), maximum rate of electron trans-
port (Jmax), photochemical (qP) and non-photochemical quenching
(NPQ), chlorophyll content, maximum rate of Rubisco carboxylation
(Vcmax), Rubisco activity, Rubisco content, yield, use of triose-P (TPU),
leaf water potential (ΨW), mesophyll thickness, leaf nitrogen content
(leaf N), carbon to nitrogen ratio (C/N), leaf mass per area (LMA),
carbon isotope composition (δ13C) and plant hydraulic conductivity
(KL). All measurements included in the present analysis were performed
in a prudential time after grafting, in order to ensure a complete re-
establishment of vascular and tissue connections and avoid any kind of
post-grafting stress.

When not provided, WUEi was calculated from AN and gs values
reported in the original papers as:

=WUE A
gi

N

s

Finally, the database also included information on the scion and
rootstock species and variety name, primary target environment for the
rootstock selection, growth conditions and bibliographic data.

Compiled articles followed different criteria when defining the used
rootstock, depending on the aim of the study. Hence, according to the
literature available information, we classified the rootstocks in 5 main
categories, using the following criteria: rootstocks commonly used to
increase vigor or frequently used in commercial fields were labeled as
commercial (C); rootstocks defined as drought tolerant or with en-
hanced performance under drought stress were labeled as drought
tolerant (D); rootstocks defined as salt tolerant or with enhanced per-
formance under salt stress were labeled as salt tolerant (S), rootstocks
defined as tolerant to low temperatures or with enhanced performance
under low temperatures were labeled as cold tolerant (T); wild species
used as rootstocks were labeled as wild relative rootstocks (W); and
rootstocks without particular tolerances to biotic or abiotic stresses, not
being wild species, and not used in commercial fields were labeled as
experimental rootstocks (E). Supplementary Table 1 compiles all the
included rootstocks in our analysis, indicating their genus, species,
cultivar, common name and the rootstock group where it belongs.

Compiled data was classified according to the type and intensity of
abiotic stress applied to the plants. Although there were data belonging
to plants subjected to different aerial CO2 concentration, soil flooding,
low and high nutrient conditions, salt, drought, heavy metal toxicity
and high and low temperatures stresses, only drought and salt stress
provided enough data for a quantitative analysis. For drought stress,
two intensities were defined: moderate stress when the plant water
potential (Ψw) was -1.1MPa < Ψw < -1.99MPa or when the leaf re-
lative water content (RWC) was 80% < RWC<90%; and severe stress
at Ψw < −2MPa, RWC<79% or irrigation lower than 30% as com-
pared to non-stressed plants. For salt stress, three intensities were de-
fined depending on the concentration of NaCl in the solution used to
irrigate the plants: mild stress at 30–50mM, moderate stress at
51–100mM and severe stress above 100mM.

One-way ANOVA was performed to compare among non-grafted,
self-grafted and rootstock combinations, and also among rootstock
combinations (P< 0.05 after Duncan post-hoc test). Dunnett’s multiple
comparison test was performed to assess differences of rootstock com-
binations with non- and self-grafted plants. Pearson’s correlations (r)
were calculated to determine the relationships among the studied
parameters. All statistical analyses were performed using R software
(ver. 3.5.0.; R Core Team, Vienna, Austria).

3. Results

3.1. Increasing interest in improving photosynthetic performance via
grafting

Over the last 20 years, 57 original research papers including data on
the net CO2 assimilation rate (AN) of grafted plants with agronomic
interest have been published in peer-reviewed journals. The number of
published articles has been kept more or less constant between one and
5 papers per year, with the exception of 2017 when 12 papers were
published (Fig. 1a). The number of citations for these articles has been
increasing up to approximately 250 in the last 3 years (Fig. 1b), de-
noting an increasing interest on the effect of grafting on photosynthesis
and its interaction with agronomic performance.

In these articles, 19 species have been tested as scions and 23 as
rootstocks (Table 1). The main target of the compiled articles was to
test new rootstocks (41%), and rootstocks with an improved tolerance
to salt (22%) and drought stress (19%). Also, other topics as to assess
the effect of the grafting method on plant growth or to test the effects of
rootstock on biotic stresses were studied. Different growth conditions
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were observed across the compiled articles, with 21% of the studies
performed in open field and 79% in greenhouse conditions. Plants were
grown in pots in 74% of the studies (7% hydroponically) and 21% di-
rectly in soil (Table 1). No differences were observed in AN or other
photosynthetic parameters between pot and soil grown plants for any of
the species (data not shown), and therefore no distinction between
growth conditions was considered in the analyses performed in this
study.

From the 57 compiled studies, 9% included both non-grafted and
self-grafted plants as controls of the rootstocks’ combinations, 28% only
self-grafted, 35% only non-grafted and 28% did not use neither as
controls (Fig. 1a).

3.2. Effect of grafting on photosynthesis under non-stress conditions

When combining data for the same species, no differences were
observed between non-grafted and self-grafted plants for any of the
included scion species in AN, stomatal conductance (gs) or intrinsic
water-use efficiency (WUEi) under non-stress conditions (Table 2). In
consequence, from now on, we considered both non-grafted and self-
grafted as control plants. Similarly, there were non-significant differ-
ences when comparing control plants with graft combinations where
the rootstock genotype is different to the scion genotype (here defined
as rootstock combinations) (Table 2).

Although no differences were observed within each scion species for
any photosynthetic parameter under optimal growth conditions, some
differential trends were observed when considering the type of rootstock
(Fig. 2). Plants grafted onto salt tolerant rootstocks significantly increased
AN in 23% as compared to control plants (Fig. 2a). When comparing
among rootstocks, scions grafted onto salt tolerant rootstocks had sig-
nificantly higher AN than scions grafted onto low temperature tolerant,Ta
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Fig. 1. a) Number of articles published per year in peer-reviewed journals since
late 20th century containing values of AN of grafted combinations from species
with agronomic interest. Different colors of stacked bars indicate the number of
articles containing as controls of rootstock combinations both non-grafted and
self-grafted plants , only non-grafted , only self-grafted or neither ;
b) number of citations per year of the articles showed in Fig. 1a.
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drought tolerant and wild relatives’ rootstocks. Regarding gs, only scions
grafted onto commercial rootstocks differed significantly (24% increase)
from control plants (Fig. 2b). No significant differences were observed in
gs among the used rootstocks due to the large variability, although scions
grafted onto wild relatives and drought tolerant rootstocks tend to de-
crease, respectively, 40% and 20% their gs as compared to control plants.
As for WUEi, scions grafted onto wild relative rootstocks significantly
increased 61% their WUEi as compared to control plants, due to the low gs
(Fig. 2c), presenting also higher WUEi than any other rootstock combi-
nation except scions grafted onto drought tolerant rootstocks. Scions
grafted onto low temperature tolerant rootstocks significantly decreased
their WUEi (Fig. 2c).

Regarding other photosynthetic parameters under optimal condi-
tions, non-significant differences were observed when comparing be-
tween control plants and rootstock combinations or among rootstock
combinations for the sub-stomatal CO2 concentration (Ci), the actual
photochemical efficiency of photosystem II (ΦPSII), the photochemical
and non-photochemical quenching (qP and NPQ) and the maximum
quantum efficiency of photosystem II (Fv/Fm) (Table 3 and data not
shown). On the contrary, scions grafted onto salt tolerant rootstocks
had significantly higher values for the maximum velocity of Rubisco
carboxylation (Vcmax) than control plants, although no differences were
found among rootstock combinations for this parameter (Table 3).

The normalized to control plants values of the different rootstock

Table 2
Net CO2 assimilation rate (AN), stomatal conductance (gs) and intrinsic water-use efficiency (WUEi) for the different scion species and graft combinations under non-
stress conditions. ‘Non’ refers to non-grafted plants, ‘Self’ to self-grafted plants and ‘Root’ to rootstock combinations. ‘NA’ for non-available data. Data are
means± SE. Number of replicates indicated in brackets near each value. Letters denote significant differences among graft combinations within each scion species by
one-way ANOVA after Duncan post-hoc test (P< 0.05).

Scion species AN μmol CO2m-2s-1 gs mol H2O m-2s-1 WUEi μmol CO2mol-1 H2O

Capsicum annuum
Non 19.29± 2.59 a (n=6) 0.45± 0.09 a (n=6) 49.32± 6.96 a (n=6)
Self NA NA NA
Root 20.63± 1.04 a (n=18) 0.46± 0.05 a (n=18) 52.01± 5.29 a (n=18)
Citrullus lanatus
Non 13.76± 5.54 a (n=3) 0.24± 0.02 a (n=2) 77.68± 12.13 a (n=2)
Self 16.01± 2.78 a (n=5) 0.65± 0.14 a (n=2) 28.94± 6.19 a (n=2)
Root 15.17± 2.89 a (n=7) 0.49± 0.10 a (n=5) 48.04± 12.18 a (n=4)
Cucumis melo
Non 18.18± 4.22 a (n=2) 0.26± 0.05 a (n=2) 76.29± 29.87 a (n=2)
Self NA NA NA
Root 19.57± 2.15 a (n=3) 0.31± 0.04 a (n=3) 67.32± 18.36 a (n=3)
Cucumis sativus
Non 19.73± 1.94 a (n=6) 0.46± 0.2 a (n=4) 93.07± 23.45 a (n=3)
Self 13.94± 1.11 a (n=4) 0.27± 0.06 a (n=4) 62.45± 16.84 a (n=4)
Root 16.40± 1.95 a (n=11) 0.51± 0.13 a (n=9) 60.91± 14.96 a (n=8)
Ipomoea batatas
Non NA NA NA
Self 11.17± 2.44 a (n=2) NA NA
Root 9.08±1.33 a (n=4) NA NA
Solanum lycopersicum
Non 19.95± 3.69 a (n=5) 0.37± 0.09 a (n=5) 62.65± 8.64 a (n=5)
Self 19.55± 1.91 a (n=7) 0.39± 0.07 a (n=5) 58.86± 9.37 a (n=5)
Root 19.85± 1.04 a (n=29) 0.45± 0.09 a (n=15) 62.46± 6.45 a (n=15)
Solanum melongena
Non 18.79 a (n=1) NA NA
Self NA NA NA
Root 19.61± 0.30 a (n=2) NA NA
Raphanus sativus
Non NA NA NA
Self 18.03± 2.97 a (n=4) NA NA
Root 20.26± 4.01 a (n=4) NA NA
Phaseolus vulgraris
Non NA NA NA
Self 19.15± 1.89 a (n=2) 0.6± 0.18 a (n=2) 37.76± 4.09 a (n=2)
Root 19.06± 0.65 a (n=2) 0.57± 0.24 a (n=2) 39.29± 15.31 a (n=2)
Gossypium hirsutum
Non NA NA NA
Self 16.34± 2.77 a (n=2) NA NA
Root 16.44± 1.61 a (n=2) NA NA
Glycine max
Non 13.69 a (n=1) 0.19 a (n=1) 72.05 a (n=1)
Self 13.79 a (n=1) 0.19 a (n=1) 72.58 a (n=1)
Root 15.91± 0.29 a (n=2) 0.26± 0.05 a (n=2) 63.30± 11.08 a (n=2)
Annona x atemoya
Non 5.7 a (n=1) 0.12 a (n=1) 47.5 a (n=1)
Self 6.1 a (n=1) 0.11 a (n=1) 55.45 a (n=1)
Root 6.4± 1.0 a (n=3) 0.13± 0.01 a (n=3) 47.51± 4.36 a (n=3)
Vitis vinifera
Non 10.75± 1.65 a (n=4) 0.27± 0.07 a (n=4) 49.47± 8.73 a (n=4)
Self NA NA NA
Root 11.12± 0.43 a (n=22) 0.26± 0.01 a (n=22) 42.34± 2.61 a (n=22)
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combinations for AN was positively correlated with the analogous
normalization for gs, Ci, ΦPSII and Vcmax (Fig. 3). Aside from these
general trends, contrasting effects were also visible, particularly in the
relationship AN vs. gs. For instance, it is remarkable that the largest
relative increases in gs without equivalent increase in AN were observed
in plants grafted onto vigorous commercial rootstocks. When these
values were not considered, a linear adjustment of the AN vs. gs re-
lationship was observed (r= 0.69; P-value < 0.001), close to the 1:1
ratio. Interestingly, the largest relative decreases in gs while main-
taining or increasing AN were found in scions grafted onto drought
tolerant rootstocks (Fig. 3a).

A positive trend was observed between the normalized values of the
different rootstock combinations to control plants for yield and both AN

(r= 0.26; P-value=0.12, Fig. 4a) and WUEi (r= 0.37; P-value=0.08,
Fig. 4b). Despite the lack of significance, this data suggests that grafting
onto particular rootstocks, as salt tolerant or wild relatives’ rootstocks,
could allow increasing WUEi with no negative impact on yield.

3.3. Effect of grafting on photosynthesis under stress conditions

Grafting is used to mitigate the negative effects on plant growth
when plants are subjected to abiotic stress conditions, such as drought,
flooding, heavy metal in soil, low nutrient, salt, or extreme temperature
environments (Table 1). Unfortunately, with the exception of drought
and salt stress, for the rest of abiotic stresses where grafting was used to
study the effect of each stress over AN, not enough data was available to
perform a statistically valid analysis. We therefore compiled different
morphological and physiological traits identified in literature to the
maintenance of net CO2 assimilation rate in grafted plants for each type
of abiotic stress, including anatomical adaptations in scion leaves,
changes in shoot:root biomass ratio, different gene expression in scion,
different hormone balance, differences in Rubisco activity, enhanced
stomata opening control, induced anti-oxidative defense, protection of
PSII and reduced heavy metal or ion allocation in scion (Table 4). We
found that induction of the anti-oxidative defense and protection of PSII
were the most common traits associated to overcome the different
stresses through delaying stress-induced leaf senescence, and that the
low nutrient supply was the stress involving more changes in the stu-
died traits (Table 4).

For drought and salt stresses, data from different scion species was
merged according to the intensity of stress and the graft combination,
and the values for AN, gs and WUEi under stress were compared to those
under non-stress conditions (Fig. 5). It has to be considered that not all
rootstock combinations were found for all the evaluated stress levels. As
under non-stress conditions, no differences between non- and self-
grafted plants were found for AN, gs or WUEi under any level of drought
or salt stress (data not shown). Therefore, data from both non- and self-
grafted plants were again combined and considered as control plants to
be compared to the different types of rootstock. Under moderate
drought stress, no differences were observed between control plants
and rootstock combinations or among rootstock combinations in the
relative reduction in AN irrespective of the used rootstock; meanwhile
scions grafted onto commercial rootstocks had a lower gs reduction as
compared to control plants (Fig. 5a). Commercial, drought and salt
tolerant rootstock combinations had lower WUEi increase as compared
to control plants. Similar to moderate drought stress, no effect of the
used rootstock was observed in the reduction of AN under severe
drought stress. Both commercial and drought tolerant rootstock com-
binations had a lower decrease in gs as compared to control plants.
Nevertheless, no differences were observed in WUEi between control
plants and rootstock combinations or even among rootstock combina-
tions (Fig. 5a).

No differences were observed among control plants, commercial and
drought tolerant rootstock combinations under the effect of mild salt stress
on AN, gs and WUEi (Fig. 5b). However, both control plants and commercial
rootstock combinations had lower decrease in gs and lower increase in

Fig. 2. Variability of a) net CO2 assimilation rate (AN), b) stomatal conductance
(gs) and c) intrinsic water-use efficiency of rootstock combinations values
normalized to control plants (referring to both non- and self-grafted plants)
under control conditions. Data are means± SE. ‘C’ refer to commercial, ‘D’ to
drought tolerant, ‘S’ to salt tolerant, ‘T’ to cold tolerant, ‘W’ to wild relative and
‘E’ to experimental rootstocks. Letters denote differences among rootstock
combination normalized values by one-way ANOVA after Duncan post-hoc test
(P< 0.05); and asterisks between each rootstock combination and non- and
self-grafted plants after Dunnett’s test (P< 0.05).

Table 3
Variation of rootstock combinations values normalized to control plants (re-
ferring to both non- and self-grafted plants) for the sub-stomatal CO2 con-
centration (Ci), the actual photochemical efficiency of photosystem II (ΦPSII)
and the maximum velocity of Rubisco carboxylation (Vcmax) under non-stress
conditions. Data are means± SE. ‘C’ refers to commercial, ‘D’ to drought tol-
erant, ‘S’ to salt tolerant, ‘T’ to cold tolerant and ‘E’ to experimental rootstocks.
‘NA’ for non-available data. Letters denote differences among rootstock com-
bination normalized values by one-way ANOVA after Duncan post-hoc test (P<
0.05); and asterisks between each rootstock combination and non- and self-
grafted plants after Dunnett’s test (P< 0.05).

Rootstock combination Ci ΦPSII Vcmax

C 1.03±0.03 a 1.01 a 1.05± 0.02 a

D NA 0.99± 0.07 a NA
S 1.01±0.04 a 0.98 a 1.52± 0.39 a*
T 0.95 a 0.95 a 1.04 a

E 0.99 a 1.01± 0.04 a 1.23± 0.05 a
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WUEi than experimental rootstock combinations. Under moderate salt stress
conditions, scions grafted onto salt tolerant rootstocks had lower decrease in
AN than control plants with non-significant effect on gs or WUEi being
observed among rootstock combinations. Under severe salt stress, non-

significant differences between control plants and rootstock combinations
or among rootstock combinations were observed on any photosynthetic
parameter, although there is a trend for lower decrease in AN and gs for
scions grafted onto salt and drought tolerant rootstocks (Fig. 5b).

Fig. 3. Relationship between the normalized values of rootstock combinations to control plants (referring to both non- and self-grafted plants) under control
conditions for the net CO2 assimilation rate (AN) and a) the stomatal conductance (gs), b) the sub-stomatal CO2 concentration (Ci), c) the actual photochemical
efficiency of photosystem II (ΦPSII) and d) the maximum velocity of Rubisco carboxylation (Vcmax). Red dots refer to commercial, yellow to drought tolerant, blue to
salt tolerant, orange to cold tolerant, purple to wild relative and green to experimental rootstocks. Data are means. SE is not shown for clarity. Solid lines represent
regressions and dotted lines the 1:1 ratio.

Fig. 4. Relationship between the rootstock combinations values normalized to control plants (referring to both non- and self-grafted plants) under control conditions
for yield and a) the net CO2 assimilation rate (AN) and b) the intrinsic water-use efficiency (WUEi). Red dots refer to commercial, yellow to drought tolerant, blue to
salt tolerant, orange to cold tolerant, purple to wild relative and green to experimental rootstocks. Data are means. SE is not shown for clarity.
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4. Discussion

4.1. There are no differences between non- and self-grafted plants for the
main photosynthetic parameters in the studied cases

Despite all the morphologic and physiologic changes that grafting
process implies (Fig. 6), no differences were found between non-grafted
and self-grafted plants in any of the included scion species for AN, gs, or
WUEi under non-stress conditions (Table 2). Hence, the available data
lead to deduce that there is no effect of grafting over photosynthetic
parameters when the rootstock is genetically the same than the scion.
This result is probably due to the fact that measurements were per-
formed in fully-recovered combinations after grafting. No irregular
xylem connections were observed for self-grafted pepper, tomato and
aubergine plants 30 days after grafting, denoting no hydraulic restric-
tions due to grafting [9,56]. Moreover, no differences have been found
in plant biomass (fresh or dry), number of flowers or yield (total or
marketable) between non-grafted and self-grafted plants for a large
range of species [111–113]. According to this study, it seems that either
non-grafted or self-grafted plants could be used as controls when
comparing with other rootstock combinations under non-stress condi-
tions.

4.2. The rootstock selection determines the photosynthetic performance of
the scion under non-stress conditions

When comparing control plants (i.e. both non- and self-grafted
plants) to rootstock combinations for each scion species, no differences
were observed for AN, gs or WUEi (Table 2). The lack of differences in
the photosynthetic parameters between control plants and rootstock
combinations agreed with the limited influence of the rootstock over
the scion growth or yield under non-stress conditions [33,78,114,115].
However, it must be considered that very diverse rootstocks were used
in different studies for a single scion species (Table 1). For this reason,
we decided to analyse all compiled data from different scion species
depending on the used rootstock, and compare to control plants
(Fig. 2). The higher AN observed for scions grafted onto salt tolerant
rootstocks and gs of scions grafted onto commercial rootstocks as
compared to control plants can be associated with their larger root
system and the higher Vcmax of scions grafted onto salt tolerant root-
stocks (Table 3, Fig. 2a,b) [56,58,72]. However, this was not translated
into higher scion biomass or increased number of leaves for most of the
reported data [35,72,78,79], probably because under optimal condi-
tions the shoot development is not limited by the source activity in
absence of additional sinks. Indeed, it has to be considered that almost
half of the total fixed carbon in the scion is translocated to the root
system [116,117]. Hence, even under non-stress conditions, the balance
between generative and vegetative vigour when using a vigorous
rootstock must be considered in relation to the increased photosynth-
esis, since extra assimilates can be allocated to roots and fruits, but not
to leaves [54]. Unfortunately, not enough data was available to perform
a valid analysis of the effect of grafting over scion and rootstock growth,
and its interaction with photosynthesis.

When wild relatives, commonly found in non-cultivated areas under
harsh conditions [118,119], were used as rootstocks, higher propor-
tional decrease in gs as compared to other rootstock combinations was
observed (Fig. 2b), leading to remarkable WUEi increase (Fig. 2c).
However, no negative effect in yield was found in tomato grafted onto
wild relatives despite their higher WUEi [78,84]. Since graft compat-
ibility is related to the taxonomic distance between scion and rootstock
[3,120], the use of closest semi-domesticated species or even landraces
usually grown under non-irrigated environments must be considered to
obtain new rootstocks with increased WUEi [4].
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Fig. 5. Percentage of change of net CO2 assimilation rate (AN), stomatal conductance (gs) and intrinsic water-use efficiency (WUEi) of control plants (referring to both
non- and self- grafted plants) and rootstock combinations under different a) drought and b) salt stress conditions as compared to non-stressed plants. Black bars refer
to control plants, red bars to commercial, yellow to drought tolerant, blue to salt tolerant and green to experimental rootstocks. Labels as follows: Con refer to control
plants, C to commercial, D to drought tolerant, S to salt tolerant and E to experimental rootstocks. Data are means+ SE (n indicated inside each box). Letters denote
differences among control plants and rootstock combination within each stress level by one-way ANOVA after Duncan post-hoc test (P< 0.05). For drought stress,
two intensities were defined: moderate stress -1.1 MPa < Ψw < -1.99MPa or 80%< RWC<90%; severe stress Ψw < −2MPa, RWC<79% or irrigation lower than
30% as compared to non-stressed plants. For salt stress, three intensities were defined depending on the concentration of NaCl in the solution used to irrigate the
treated plants: mild stress 30–50mM; moderate stress 51–100mM; severe stress > 100mM.
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4.3. The increase of the photosynthetic capacity is related to the capability
of the rootstock to improve scion leaf traits

Under non-stress conditions, the increase in gs of scions grafted onto
different rootstocks as compared to control plants was positively cor-
related with the increase in AN (Fig. 3a; r= 0.51; P-value < 0.001). For
most of the included rootstock combinations, changes in both para-
meters were proportional (near the 1:1 ratio), indicating a low inter-
action of the used rootstock in the relationship between AN and gs.
Nevertheless, specific rootstock combinations did not follow the de-
scribed general pattern, depending on the used rootstock or even the
scion. [78] used a drought tolerant tomato landrace as scion, char-
acterized by low stomatal aperture and maximization of WUEi
[121,122]. When grafted onto commercial rootstocks, the drought
tolerant tomato landrace increased gs up to three times but only in-
creased AN 20% as compared to control plants, thereby decreasing
WUEi, indicative that increasing gs may not translate into enhanced AN

when photosynthesis is biochemically-limited [78]. On the contrary,
tomato, pepper and bean scions grafted onto wild, commercial, drought
tolerant and experimental rootstocks increased WUEi as compared to
control plants by decreasing gs in most cases, with no negative effect on
AN (Fig. 3a), plant growth or yield [24,56,78,85,90], suggesting that
the rootstock can be used to optimize CO2 fixation per unit of water
transpired.

Aside from gs, the mesophyll anatomical properties are also a key
photosynthetic trait determining the pathway of CO2 from substomatal
cavity to carboxylation sites [123,124]. It has been reported that
grafting onto commercial rootstocks altered leaf mesophyll thickness
and spongy parenchyma thickness as compared to control plants, but its

effect on AN has not been yet studied [60,83]. Not only diffusional
parameters, but photochemical and biochemical leaf traits could also
limit AN [125,126]. No major incidence of the used rootstock on ΦPSII
was found for the studied scions under non-stress conditions (Table 3),
being the changes in both parameters near the 1:1 ratio (Fig. 3c). Apart
from the higher stomatal control and increase of water-use efficiency
through regulating leaf biomass [33], increases in ABA and cytokinins
level of grafted plants has been related with activation of the anti-
oxidant system and increase in mRNA levels of the large and small
subunits of Rubisco [14,75]. Hence, higher Vcmax and maximum rate of
electron transport (Jmax) were observed in grafted plants, driving to an
increase in AN [35,63]. However, contrasting results were observed
when assessing the effect of grafting on Rubisco content [75,87,92].

Overall, different processes and mechanisms are involved in the
regulation of photosynthetic parameters in grafted plants (Fig. 6). Scion
and rootstock traits, but also their interaction, determine changes in the
described diffusive and photo- and biochemical traits. Unravelling how
to optimize those processes using particular rootstocks will not only
lead to increase AN, but also to improve agronomic performance and
maximize potential yield under control conditions [38,44].

In this sense, Fig. 4a suggests a positive, although non-significant (P-
value > 0.05), trend between photosynthesis and yield. Several reasons
can explain the weakness of this correlation, such the scarcity of studies
considering the rootstock effect on both parameters, the additional
generative/reproductive effects on assimilate reallocation and the in-
teraction with the environmental conditions. Also, Fig. 4b showed that
WUEi can be increased without negative effect on yield. More studies
are required to confirm those rootstock-mediated enhancements, but
inclusion of other parameters as rootstock and scion biomass will help

Fig. 6. Main processes involved with increases in the net CO2 assimilation rate (AN) regulated by the scion-rootstock interaction under non-stress conditions. Arrows
represent positive regulations.
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to clarify and understand the role of grafting in how carbon is allocated
in the plant.

4.4. Grafting promotes different mechanisms to overcome the deleterious
effect of abiotic stress over photosynthetic performance

Under abiotic stress, the use of tolerant rootstock to that particular
stress leads to the activation of different mechanisms to protect the
photosynthetic apparatus and delay the stress-induced leaf senescence
(Table 4). Most of those mechanisms are linked among them. For ex-
ample, the protection of the reaction center of PSII is usually related
with the activation of the anti-oxidative defense system [63], which in
turn is associated to the capacity to retain ions in roots and avoid their
translocation to leaves [94,127,128]. Similarly, rootstock grafting
maintains Rubisco activity under stress conditions due to an over-
expression of Rubisco related genes, improving the photosynthetic
performance [72]. Hence, mitigation of the effect of the stress over AN

when using tolerant rootstocks is mostly related to the alleviation of
deleterious effect of stress over scion photochemical and biochemical
parameters [35], although an effect through altering diffusive rates or
regulating other stomatal related parameters cannot be ruled out [30].
Indeed, elevated AN, gs and Ci, and maintaining sink-activity in the
aerial organs under stress, explained increased yield in pepper grafted
onto a generative rootstock under control and drought conditions [54].

However, the maintenance of elevated transpiration under stress
conditions is not always an advantageous trait, particularly when water
is scarce. Tolerance to drought and salt stress has been related to a
decrease of transpiration, achieved through a reduction of leaf area or
biomass accumulation, which in turn increase WUE at the whole plant
level [129,130], but decreases crop yield. The tendency of scions
grafted onto drought tolerant rootstocks to decrease gs more than other
rootstock combinations under moderate drought stress can be asso-
ciated to an improved stomatal closure response, regulated by root
chemical signals like ABA, cytokinins and jasmonic acid [32] (Fig. 5a).
Despite their higher proline concentration and antioxidant activity in
leaves [24], the reduction of ∼80% in gs observed for drought tolerant
rootstock combinations under severe drought stress unavoidably leads
to a reduction in AN, analogous to the reported in other rootstock
combinations. On the other hand, similar AN reduction was observed
under both moderate and severe salt stress conditions when using salt
tolerant rootstocks, denoting the capability of these rootstocks to avoid
ion translocation to scion and protect the photosynthetic apparatus
even under extreme conditions [56,103,131] (Fig. 5b).

Overall, maintenance or optimization of AN vs gs under stress con-
ditions can be modified by the rootstock through acting on different
biophysical and biochemical processes in the aerial part of the plant,
existing examples where those advantages can be translated to higher
yield. Gaining knowledge about the physiological and genetic de-
terminants of such rootstock-mediated traits is of great interest to in-
crease yield and yield stability through grafting.

4.5. Concluding remarks

The lack of differences in AN, gs or WUEi between non-grafted and
self-grafted plants in any of the included species suggests that both non-
or self-grafted plants can be selected as controls in future experiments
devoted to examine the effect of grafting on photosynthesis. Published
data indicate that WUEi can be improved by grafting onto specific
rootstocks under non-stress conditions, with scions grafted onto vig-
orous rootstocks increasing AN. There are still gaps to be filled towards
a complete understanding of the scion-rootstock communication and
the mechanisms through which photosynthesis is affected by grafting.
In this sense, we propose that future research should include changes in
hormonal balance, and stomatal and leaf anatomy measurements as a
complement of the photosynthesis measurements in order to obtain
answers to some of those questions. Moreover, more accurate studies

considering long-term experiments are required to establish a clear
relationship between the affected photosynthetic parameters and crop
yield. Overall, the present compilation of data allows to highlight im-
portant effects of grafting on photosynthesis and reveals grafting as a
viable technique to improve crop photosynthetic performance and to
contribute to food security in the context of climate change imposed
conditions.
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